
English | Size: 2.4 GB
Genre: eLearning
Learn how to apply probability theory and statistical inferencing techniques to validate algorithmic trading strategies.
What you’ll learn
Learn basics for finance and probability theory for algorithmic trading.
Learn statistical inferencing techniques such as parametric and nonparametric hypothesis tests.
Employ statistical learning techniques on quantitative trading strategies in Python.
Learn practical validation methods quants use before taking strategies into production.
Have you asked:
- Is my quant trading strategy performance statistically significant ?
- Are my in-sample performances statistically significant while controlling for model complexity and bias? Is my ML model an inefficiency detector or a piece of overfitting poppycock software?
- If I backtest 10 strategies, pick those with Sharpe > 1, am I headed for wealth or ruin?
Statistical Inferencing for Quantitative Trading Strategies is one-of-a-kind quantitative lecture series on applying probability theory and statistical methods to construct robust hypothesis tests for validation of trading strategies using distribution-free methods.
The course takes the student on a whirlwind tour of finance basics, statistics basics as well as more advanced and modern techniques in statistical decision/inferencing theory.
Hypothesis testing concepts, Type I/II errors, powers, FWER control, multiple testing frameworks are introduced under both parametric and non-parametric assumptions for quantitative research.
Classical location tests (t,sign,rank-sum) tests are discussed in addition to cutting edge techniques using monte-carlo permutation methods. The lectures take you through the motivation for the need to employ rigorous scientific procedures in validating trading strategies.
In pharmaceuticals, medicine and other high-stakes industries, experimental design and implementation are key to decision-making, such as the acceptance of new chemicals in treatments. Unfortunately – hardly the same amount of scientific rigour is paid in deciding whether to take a trading strategy live. Apparently, moon cycles and lunar phases are enough! For these people, the writing is in the wall.
Who this course is for:
- Traders interested in applying statistical theory to trading.
- Statisticians interested in applying probability theory to trading.

rapidgator.net/file/01d651e64693356376536db5782670b4/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part1.rar.html
rapidgator.net/file/199faefc67766a04faf1e4ac0636be73/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part2.rar.html
rapidgator.net/file/5b31cab924402ebde9e1812dc9afb20b/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part3.rar.html
rapidgator.net/file/c573b18ca36e059a8cb7e418bd10552d/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part4.rar.html
rapidgator.net/file/3167846bafabc1b412deac3d2952d91b/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part5.rar.html
rapidgator.net/file/e0ff83792c2530c9c0d774edb0c8c9ed/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part6.rar.html
rapidgator.net/file/02f8b9e130e8b3a77477fbe4fb10e8e5/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part7.rar.html
trbt.cc/ig767vpuytbb/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part1.rar.html
trbt.cc/t01vrzrvpury/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part2.rar.html
trbt.cc/eg5xrs9djfu6/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part3.rar.html
trbt.cc/wry9437idwbi/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part4.rar.html
trbt.cc/4c0boje73gcn/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part5.rar.html
trbt.cc/ymxsxtqaje5x/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part6.rar.html
trbt.cc/ij40vkp4z049/UD-StatisticalInferencingforQuantitativeTradingStrategies2025-5.part7.rar.html
If any links die or problem unrar, send request to
forms.gle/e557HbjJ5vatekDV9